(x^2)-(2(x))=90

Simple and best practice solution for (x^2)-(2(x))=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)-(2(x))=90 equation:



(x^2)-(2(x))=90
We move all terms to the left:
(x^2)-(2(x))-(90)=0
determiningTheFunctionDomain x^2-2x-90=0
a = 1; b = -2; c = -90;
Δ = b2-4ac
Δ = -22-4·1·(-90)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{91}}{2*1}=\frac{2-2\sqrt{91}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{91}}{2*1}=\frac{2+2\sqrt{91}}{2} $

See similar equations:

| 16n2−9=0 | | 12x-91=x+195 | | 21(-x)+12x=44 | | 1+5x=-16+x+3+6 | | -7(7x-6)+1=-49x+43 | | (4x-3)^1/3=2 | | (4⋅6x)+(4⋅2)=0 | | 6x+2=65-x | | 9x-74=-4x+160 | | 3=-4n+7n | | 6x-1x=5x+10 | | -3=-3×2t-1 | | -x/6+31=64 | | 5=8y+7 | | (3x)+5=26 | | 5+2x=-6x+5 | | -7(k-8)=84 | | 2n-8n=12 | | 1.4x+1.5=8.7-x | | -4p+7p=-15 | | a-9+a-9*3+a=39 | | 3x-7=15x-85 | | 8+2x=5x+8 | | 1.1n=4.8 | | 6(4x-1)=0 | | 4/3=1/8x | | 35.56=7g+3.85 | | 3x/15=x/45 | | 9=2x+9 | | -5=-2r-3r | | -5+3(4p+8)=103 | | y-2/y-9=7/y-9 |

Equations solver categories